skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moriasi, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Model projections predict increasing temperatures and precipitation change in many locations in the Central United States. To provide perspective on what these trends might bring relative to what has already happened, we compared historical temperature and precipitation change with what models from the Coupled Model Intercomparison Project (CMIP6) predict. The analysis focuses on regions represented by five long‐term agroecosystem research sites along a latitudinal transect from Michigan to Iowa, Missouri, Oklahoma, and Mississippi. We analyzed trends in long‐term records (≥50 years) of precipitation and temperature data at annual and monthly scales using indicators that characterize extreme and average temperature and rainfall amounts. Results show that temperatures have changed from 1900 to 2020, more for minimum (0.1°C–0.3°C decade−1) than maximum (−0.1°C–0.2°C decade−1), more for winter (−0.1°C–0.3°C decade−1) than summer (−0.1°C–0.1°C decade−1), and more often in the north than in the south. Except in Mississippi, annual precipitation has increased at rates of 25 mm decade−1or greater over 1950–2020, but monthly trends were inconsistent. Projected trends suggest continued temperature increases, highlighting the urgent need for research on management systems that are resilient to such increases. 
    more » « less
    Free, publicly-accessible full text available August 6, 2026
  2. Transect-based monitoring has long been a valuable tool in ecosystem monitoring. These transects are often used to measure multiple ecosystem attributes. The line-point intercept (LPI), vegetation height, and canopy gap intercept methods comprise a set of core methods, which provide indicators of ecosystem condition. However, users struggle to design a sampling strategy that optimizes the ability to detect ecological change using transect-based methods. We assessed the sensitivity of these core methods on a one-hectare plot to transect length, number, and sampling interval to determine: 1) minimum sampling required to describe ecosystem characteristics and detect change for each method and 2) optimal transect length and number for all three methods to make recommendations for future analyses and monitoring efforts. We used data from 13 National Wind Erosion Research Network locations spanning the western US, which included 151 measurements over time across five biomes. We found that longer and increased numbers of transects were more important for reducing sampling error than increased sample intensity along transects. For all methods and indicators across plots, three 100-m transects reduced sampling error so that indicator estimates fall within an 95% confidence interval of +/- 5% for canopy gap intercept and LPI-total foliar cover, +/- 5 cm for height and +/- two species for LPI-species counts. For the same criteria at 80% confidence intervals, two 100-m transects are needed. Site-scale inference was strongly affected by sample design, consequently our understanding of ecological dynamics may be influenced by sampling decisions. 
    more » « less